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1 Moment-generating function of the sufficient statistic

The probability density or mass function of an exponential family member takes the following form

P (x|θ) = f(x)g(θ)eϕ(θ)
TT(x)

where θ is the conventional parameter, ϕ(θ) is the natural parameter, and T(x) is the sufficient statistic.
We can also write the probability density function in terms of the natural parameter ϕ(θ) ≡ η,

P (x|θ) = f(x)eη
TT(x)−A(η)

where A(η) = − ln g(θ) is called the log-partition function.
We show that taking derivative of the log-partition function with respect to the natural parameter generates
moments of the sufficient statistic. First, we have that a probability density function always integrate to 1

e−A(η)

∫
x

f(x)eη
TT(x)dx = 1

We take derivative of both sides with respect to η and obtain

de−A(η)

dη

∫
x

f(x)eη
TT(x)dx+ e−A(η)

∫
x

f(x)
deη

TT(x)

dη
dx = 0

⇒ −dA(η)
dη

e−A(η)

∫
x

f(x)eη
TT(x)dx+ e−A(η)

∫
x

f(x)T(x)eη
TT(x)dx = 0

We notice that the first term is the derivative of the log-partition function and the second term is the expectation
of the sufficient statistic

−dA(η)
dη

∫
x

f(x)eη
TT(x)e−A(η)dx+

∫
x

f(x)T(x)eη
TT(x)e−A(η)dx = −dA(η)

dη
+ ⟨T(x)⟩ = 0

Therefore, we arrive at

⟨T(x)⟩ = dA(η)

dη

A more general fact is that higher-order derivatives of the log-partition function generate higher-order moments
of the sufficient statistics.

2 Multivariate normal

A multivariate normal distribution is expressed as

x ∼ N (µ,Σ)

P (x) = |2πΣ|−1/2e−
1
2 (x−µ)TΣ−1(x−µ)

The probability density function can be written as

P (x) = |2πΣ|−1/2exp

[
−1

2

(
xTΣ−1x− xTΣ−1µ− µTΣ−1x+ µTΣ−1µ

)]
= |2πΣ|−1/2e−

1
2µ

TΣ−1µexp

[
µTΣ−1x− 1

2
xTΣ−1x

]
Hence, the base measure f , the normalizer g, the natural parameters ϕ, the sufficient statistic T are

f(x) = 1

g(µ,Σ) = |2πΣ|−1/2e−
1
2µ

TΣ−1µ

ϕ(µ,Σ) =

[
Σ−1µ

− 1
2vec(Σ

−1)

]
T(x) =

[
x

vec(xxT)

]
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We denote the natural parameters as

η1 = Σ−1µ, η2 = −1

2
Σ−1

The log-partition function can be expressed in terms of the natural parameters as

µ = −1

2
η−1
2 η1

Σ = −1

2
η−1
2

Take the negative logarithm of g(µ,Σ) and re-expressing it with η1,η2, we get A(η1,η2).

A(η1,η2) = − ln g(θ) =
D

2
ln 2π +

1

2
ln

∣∣∣∣−1

2
η−1
2

∣∣∣∣− 1

4
ηT
1 η

−1
2 η1

Taking derivatives of A(η1,η2) gives us the expectation of the sufficient statistics

⟨x⟩ = dA(η1,η2)

dη1
= −1

2
η−1
2 η1 = µ

〈
xxT

〉
=
dA(η1,η2)

dη2

=
1

2

d ln
∣∣− 1

2η
−1
2

∣∣
d(− 1

2η
−1
2 )

d(− 1
2η

−1
2 )

dη2
− 1

4

ηT
1 η

−1
2 η1

dη2

=
1

2
(−2η2)

1

2
η−1
2 η−1

2 +
1

4
η−1
2 η1η

T
1 η

−1
2

= Σ+ µµT

In computing derivatives, we used several matrix calculus facts:

d

da
aTMa = 2Ma

d

dM
aTM−1a = −M−TaaTM−T

d

dM
ln |M | =M−T

where a ∈ RD,M ∈ RD×D. The Matrix Cookbook is recommended for looking up such matrix calculus facts.

3 Binomial

A binomial distribution is expressed as

x ∼ Binom(p)

P (x) =

(
N

x

)
px(1− p)(N−x)

The probability function can be equivalently written as

P (x) =

(
N

x

)
px(1− p)(N−x)

=

(
N

x

)
exp [x ln p+ (N − x) ln (1− p)]

=

(
N

x

)
exp

[
x ln

p

1− p
+N ln (1− p)

]
=

(
N

x

)
eN ln (1−p)exp

(
x ln

p

1− p

)
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Hence, the base measure f , the normalizer g, the natural parameters ϕ, the sufficient statistic T are

f(x) =

(
N

x

)
g(p) = eN ln (1−p)

ϕ(p) = ln
p

1− p

T(x) = x

The expectation of the sufficient statistics can be computed as

⟨x⟩ = −d ln g(p)
dp

dp

dϕ(p)

= −dN ln (1− p)

dp

dp

d ln p
1−p

=
N

1− p

1
1
p + 1

1−p

= Np

4 Multinomial

A multinomial distribution is expressed as

x ∼ Multinom(p)

P (x) =
N !

x1!x2! . . . xD!

D∏
d=1

pxd

d

The probability function can be equivalently written as

P (x) =
N !

x1!x2! . . . xD!

D∏
d=1

pxd

d

=
N !

x1!x2! . . . xD!
exp

(
D∑

d=1

xd ln pd

)

Hence, the base measure f , the normalizer g, the natural parameters ϕ, the sufficient statistic T are

f(x) =
N !

x1!x2! . . . xD!

g(p) = 1

ϕ(p) =


ln p1
ln p2

...
ln pD−1



T(x) =


x1
x2
...

xD−1


Note that the sufficient statistic is (D − 1)-dimensional, not D-dimensional. This is because we have the
constraint

∑D
d=1 xd = N , and can always infer the D-th dimension if given (D − 1) dimensions. The same

argument applies to the natural parameters because there is also a constraint
∑D

d=1 pd = 1.
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The expectation of the sufficient statistics can be computed using the definition of expectation

⟨xd⟩ =
N∑

xd=0

xdP (x)

=

N∑
xd=1

xd
N !

x1!x2! · · ·xD!
px1
1 p

x2
2 · · · pxD

D

=

N∑
xd=1

xd
N

xd
pd ·

(N − 1)!

x1! · · · (xd − 1)! · · ·xD!
px1
1 · · · pxd−1

d · · · pxD

D

= Npd

N∑
xd=1

(N − 1)!

x1! · · · (xd − 1)! · · ·xD!
px1
1 · · · pxd−1

d · · · pxD

D

= Npd

N−1∑
xd=0

(N − 1)!

x1!x2! · · ·xD!
px1
1 p

x2
2 · · · pxD

D

= Npd

where we used an equality from the multinomial expansion

1 = (p1 + p2 + · · ·+ pD)N−1 =

N−1∑
xd=0

(N − 1)!

x1!x2! · · ·xD!
px1
1 p

x2
2 · · · pxD

D

5 Poisson

A Poisson distribution is expressed as

x ∼ Poisson(µ)

P (x) =
µxe−µ

x!

The probability function can be equivalently written as

P (x) =
µxe−µ

x!

=
1

x!
e−µelnµx

=
1

x!
e−µex lnµ

Hence, the base measure f , the normalizer g, the natural parameters ϕ, the sufficient statistic T are

f(x) =
1

x!
g(µ) = e−µ

ϕ(µ) = lnµ

T(x) = x

The expectation of the sufficient statistics can be computed as

⟨x⟩ = −d ln g(µ)
dµ

dµ

dϕ(µ)
= −d ln e

−µ

dµ

dµ

d lnµ
= µ

6 Beta

A Beta distribution is expressed as

x ∼ Beta(α, β)

P (x) =
1

B(α, β)
xα−1(1− x)

β−1
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The probability function can be equivalently written as

P (x) =
1

B(α, β)
xα−1(1− x)

β−1

=
1

B(α, β)
e(α−1) ln xe(β−1) ln(1−x)

=
1

B(α, β)
e(α−1) ln x+(β−1) ln(1−x)

Hence, the base measure f , the normalizer g, the natural parameters ϕ, the sufficient statistic T are

f(x) = 1

g(α, β) =
1

B(α, β)

ϕ(α, β) =

[
α− 1
β − 1

]
T(x) =

[
lnx

ln(1− x)

]
The expectation of the sufficient statistic is

⟨T(x)⟩ =
[

⟨lnx⟩
⟨ln(1− x)⟩

]
= −d ln g(α, β)

dϕ(α, β)
=
d lnB(α, β)

d

[
α− 1
β − 1

] =

[
d lnB(α,β)

dα
d lnB(α,β)

dβ

]

We can write the Beta function in terms of Gamma functions

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

The expectation can thus be computed as

⟨lnx⟩ = d ln Γ(α)

dα
− d ln Γ(α+ β)

dα
= ψ(α)− ψ(α+ β)

⟨ln(1− x)⟩ = d ln Γ(β)

dα
− d ln Γ(α+ β)

dα
= ψ(β)− ψ(α+ β)

where the digamma function is defined as the logarithmic derivative of the gamma function ψ(z) = d
dz ln Γ(z).

7 Gamma

A Gamma distribution is expressed as

x ∼ Gamma(α, β)

P (x) =
βα

Γ(α)
x(α−1)e−βx

The probability function can be equivalently written as

P (x) =
βα

Γ(α)
x(α−1)e−βx

=
βα

Γ(α)
e(α−1) ln xe−βx

=
βα

Γ(α)
e(α−1) ln x−βx

Hence, the base measure f , the normalizer g, the natural parameters ϕ, the sufficient statistic T are

f(x) = 1

g(α, β) =
βα

Γ(α)

ϕ(α, β) =

[
α− 1
−β

]
T(x) =

[
lnx
x

]
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The expectation of the sufficient statistics can be computed as

⟨T(x)⟩ =
[
⟨lnx⟩
⟨x⟩

]
= −d ln g(α, β)

dϕ(α, β)
=
d [−α lnβ + lnΓ(α)]

d

[
α− 1
−β

] =

[
− lnβ + Γ′(α)

Γ(α)
α
β

]
=

[
− lnβ + ψ(α)

α
β

]

8 Dirichlet

A Dirichlet distribution is expressed as

x ∼ Dirichlet(α)

P (x) =
Γ
(∑D

d=1 αd

)
∏D

d=1 Γ(αd)

D∏
d=1

xαd−1
d

The probability function can be equivalently written as

P (x) =
Γ
(∑D

d=1 αd

)
∏D

d=1 Γ(αd)

D∏
d=1

xαd−1
d

=
Γ
(∑D

d=1 αd

)
∏D

d=1 Γ(αd)
exp

[
D∑

d=1

(αd − 1) lnxd

]

Hence, the base measure f , the normalizer g, the natural parameters ϕ, the sufficient statistic T are

f(x) = 1

g(α) =
Γ
(∑D

d=1 αd

)
∏D

d=1 Γ(αd)

ϕ(α) =


α1 − 1
α2 − 1

...
αD − 1



T(x) =


lnx1
lnx2

...
lnxD


The expectation of the sufficient statistics can be computed as

⟨T(x)⟩ =


⟨lnx1⟩
⟨lnx2⟩

...
⟨lnxD⟩

 = −d ln g(α)

dϕ(α)

Equivalently,

⟨lnxd⟩ = −d ln g(α)

dαd

=
d

dαd

[
− ln Γ

(
D∑

d=1

αd

)
+

D∑
d=1

ln Γ(αd)

]

=
d

dαd

[
− ln Γ

(
D∑

d=1

αd

)
+ lnΓ(αd)

]

= −ψ

(
D∑

d=1

αd

)
+ ψ(αd)
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