Probabilistic & Unsupervised Learning TA: Yedi Zhang

Lecturer: Peter Orbanz Exponential Family yedi@gatsby.ucl.ac.uk

1 Moment-generating function of the sufficient statistic

The probability density or mass function of an exponential family member takes the following form
P(a]0) = f(2)g(0)e** ™™

where 6 is the conventional parameter, ¢(9) is the natural parameter, and T(z) is the sufficient statistic.
We can also write the probability density function in terms of the natural parameter ¢(6) = 1,

P(z]0) = f(x)enTT(m)*A(n)

where A(n) = —Ing(0) is called the log-partition function.
We show that taking derivative of the log-partition function with respect to the natural parameter generates
moments of the sufficient statistic. First, we have that a probability density function always integrate to 1
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We take derivative of both sides with respect to  and obtain
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We notice that the first term is the derivative of the log-partition function and the second term is the expectation
of the sufficient statistic
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A more general fact is that higher-order derivatives of the log-partition function generate higher-order moments
of the sufficient statistics.

2 Multivariate normal

A multivariate normal distribution is expressed as

x ~N(p, %)
P(x) = ‘Qﬁg‘—1/26—%(x—u)T2*1(x—u)

The probability density function can be written as
1
P(x) = [27%] " 2exp [—2 (X' —x"S - TS x uTE‘lu)]

1

- 1
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Hence, the base measure f, the normalizer g, the natural parameters ¢, the sufficient statistic T are
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We denote the natural parameters as
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The log-partition function can be expressed in terms of the natural parameters as

Take the negative logarithm of ¢g(u, ) and re-expressing it with 1, 12, we get A(n1, 12).
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Taking derivatives of A(n;, 7)) gives us the expectation of the sufficient statistics
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In computing derivatives, we used several matrix calculus facts:
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where a € RP, M € RP*P, The Matrix Cookbook is recommended for looking up such matrix calculus facts.

3 Binomial
A binomial distribution is expressed as

© ~ Binom(p)
P(z) = (JZ ) (1 — p)V—2)

The probability function can be equivalently written as

P(z) = (J;’)pm —p) N
_ (Z)exp[xlnp—i—(N—a:)ln(l—p)]
_ (Z)exp {mlnlpp +N1n(1—p)}
_ (JZ)eNlnu—p)exp (mln - fp)


https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Hence, the base measure f, the normalizer g, the natural parameters ¢, the sufficient statistic T are
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The expectation of the sufficient statistics can be computed as
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4 Multinomial
A multinomial distribution is expressed as

X ~ I\/Iultinom(p)

P(x) = x1|$2| o Hp

The probability function can be equivalently written as

P(X)=x1,x2 ,Hp

D
NI
= g eXp Z zqlnpg
zilzo!. .. xp!
d=1
Hence, the base measure f, the normalizer g, the natural parameters ¢, the sufficient statistic T are
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Note that the sufficient statistic is (D — 1)-dimensional, not D-dimensional. This is because we have the
constraint 25:1 xq = N, and can always infer the D-th dimension if given (D — 1) dimensions. The same

argument applies to the natural parameters because there is also a constraint ZdDzl pq = 1.



The expectation of the sufficient statistics can be computed using the definition of expectation

xd:()
N
N! X1, T2 XD
- Z xdxllxgln-xl)!pl P2 Pp
xq=1
N
N (N B 1)' T Tq—1 Tp
= Td——Pd by P P
mdzzl T ! (g —D!-zp!t d b
N
UV‘*I)! T rg—1
- N 1, . pTa=l  TD
pdlel...(xd_l)!...x P17 Pa Pp
xq=1
N-1
(N_ 1)' T1, T z
=N T1,.T2 . TD
bd 581'1‘2!"-CCD! 12 Pp
IdZO
= Npq
where we used an equality from the multinomial expansion
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5 Poisson
A Poisson distribution is expressed as

x ~ Poisson(p)
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The probability function can be equivalently written as

P(z) =

1
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g(p) = e
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The expectation of the sufficient statistics can be computed as
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6 Beta

A Beta distribution is expressed as

x ~ Beta(a, 3)




The probability function can be equivalently written as

P(z) = 21— 2)? !
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Hence, the base measure f, the normalizer g, the natural parameters ¢, the sufficient statistic T are
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The expectation of the sufficient statistic is
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We can write the Beta function in terms of Gamma functions
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The expectation can thus be computed as
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where the digamma function is defined as the logarithmic derivative of the gamma function ¢ (z) = d% InT(2).

7 Gamma
A Gamma distribution is expressed as
x ~ Gamma(c, 8)

P(z) = I%m(a_l)e_m

The probability function can be equivalently written as
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Hence, the base measure f, the normalizer g, the natural parameters ¢, the sufficient statistic T are
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The expectation of the sufficient statistics can be computed as
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8 Dirichlet
A Dirichlet distribution is expressed as
x ~ Dirichlet(a)
(Zd 1ad) D
Hd 1 Tlaa) 32

The probability function can be equivalently written as

P(x) =

Z(ad — 1) Inzy
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Hence, the base measure f, the normalizer g, the natural parameters ¢, the sufficient statistic T are
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D
r (Ed:l O‘d)
D
[Ti=: Plaa)

_041—1
042—1

g(a) =

_OéD —1
_lnxl
In x5

|Inzp
The expectation of the sufficient statistics can be computed as
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