Lecturer: Peter Orbanz

1 Moment-generating function of the sufficient statistic

The probability density or mass function of an exponential family member takes the following form

$$P(x|\theta) = f(x)g(\theta)e^{\phi(\theta)^{\mathsf{T}}\mathsf{T}(x)}$$

where θ is the conventional parameter, $\phi(\theta)$ is the natural parameter, and $\mathsf{T}(x)$ is the sufficient statistic. We can also write the probability density function in terms of the natural parameter $\phi(\theta) \equiv \eta$,

$$P(x|\theta) = f(x)e^{\eta^{\mathsf{T}}\mathsf{T}(x) - A(\eta)}$$

where $A(\eta) = -\ln g(\theta)$ is called the log-partition function.

We show that taking derivative of the log-partition function with respect to the natural parameter generates moments of the sufficient statistic. First, we have that a probability density function always integrate to 1

$$e^{-A(\eta)} \int_{x} f(x) e^{\eta^{\mathsf{T}} \mathsf{T}(x)} dx = 1$$

We take derivative of both sides with respect to η and obtain

$$\begin{split} \frac{de^{-A(\eta)}}{d\eta} \int_x f(x) e^{\eta^\mathsf{T} \mathsf{T}(x)} dx + e^{-A(\eta)} \int_x f(x) \frac{de^{\eta^\mathsf{T} \mathsf{T}(x)}}{d\eta} dx &= 0 \\ \Rightarrow \quad -\frac{dA(\eta)}{d\eta} e^{-A(\eta)} \int_x f(x) e^{\eta^\mathsf{T} \mathsf{T}(x)} dx + e^{-A(\eta)} \int_x f(x) \mathsf{T}(x) e^{\eta^\mathsf{T} \mathsf{T}(x)} dx &= 0 \end{split}$$

We notice that the first term is the derivative of the log-partition function and the second term is the expectation of the sufficient statistic

$$-\frac{dA(\eta)}{d\eta}\int_x f(x)e^{\eta^\mathsf{T}\mathsf{T}(x)}e^{-A(\eta)}dx + \int_x f(x)\mathsf{T}(x)e^{\eta^\mathsf{T}\mathsf{T}(x)}e^{-A(\eta)}dx = -\frac{dA(\eta)}{d\eta} + \langle \mathsf{T}(x)\rangle = 0$$

Therefore, we arrive at

$$\langle \mathsf{T}(x) \rangle = \frac{dA(\eta)}{d\eta}$$

A more general fact is that higher-order derivatives of the log-partition function generate higher-order moments of the sufficient statistics.

2 Multivariate normal

A multivariate normal distribution is expressed as

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$P(\mathbf{x}) = |2\pi \boldsymbol{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

The probability density function can be written as

$$P(\mathbf{x}) = |2\pi \mathbf{\Sigma}|^{-1/2} \exp\left[-\frac{1}{2} \left(\mathbf{x}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \mathbf{x}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right]$$
$$= |2\pi \mathbf{\Sigma}|^{-1/2} e^{-\frac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}} \exp\left[\boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \mathbf{x}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right]$$

Hence, the base measure f, the normalizer g, the natural parameters ϕ , the sufficient statistic T are

$$\begin{split} f(\mathbf{x}) &= 1 \\ g(\boldsymbol{\mu}, \boldsymbol{\Sigma}) &= |2\pi \boldsymbol{\Sigma}|^{-1/2} e^{-\frac{1}{2}\boldsymbol{\mu}^\mathsf{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}} \\ \phi(\boldsymbol{\mu}, \boldsymbol{\Sigma}) &= \begin{bmatrix} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \\ -\frac{1}{2} \mathsf{vec}(\boldsymbol{\Sigma}^{-1}) \end{bmatrix} \\ \mathsf{T}(\mathbf{x}) &= \begin{bmatrix} \mathbf{x} \\ \mathsf{vec}(\mathbf{x}\mathbf{x}^\mathsf{T}) \end{bmatrix} \end{split}$$

We denote the natural parameters as

$$\eta_1 = \Sigma^{-1} \mu, \quad \eta_2 = -\frac{1}{2} \Sigma^{-1}$$

The log-partition function can be expressed in terms of the natural parameters as

$$oldsymbol{\mu} = -rac{1}{2}oldsymbol{\eta}_2^{-1}oldsymbol{\eta}_1 \ \Sigma = -rac{1}{2}oldsymbol{\eta}_2^{-1}$$

Take the negative logarithm of $g(\mu, \Sigma)$ and re-expressing it with η_1, η_2 , we get $A(\eta_1, \eta_2)$.

$$A(\boldsymbol{\eta}_1,\boldsymbol{\eta}_2) = -\ln g(\boldsymbol{\theta}) = \frac{D}{2}\ln 2\pi + \frac{1}{2}\ln \left| -\frac{1}{2}\boldsymbol{\eta}_2^{-1} \right| - \frac{1}{4}\boldsymbol{\eta}_1^\mathsf{T}\boldsymbol{\eta}_2^{-1}\boldsymbol{\eta}_1$$

Taking derivatives of $A(\eta_1,\eta_2)$ gives us the expectation of the sufficient statistics

$$\begin{split} \langle \mathbf{x} \rangle &= \frac{dA(\eta_1, \eta_2)}{d\eta_1} = -\frac{1}{2} \eta_2^{-1} \eta_1 = \mu \\ \langle \mathbf{x} \mathbf{x}^\mathsf{T} \rangle &= \frac{dA(\eta_1, \eta_2)}{d\eta_2} \\ &= \frac{1}{2} \frac{d \ln \left| -\frac{1}{2} \eta_2^{-1} \right|}{d(-\frac{1}{2} \eta_2^{-1})} \frac{d(-\frac{1}{2} \eta_2^{-1})}{d\eta_2} - \frac{1}{4} \frac{\eta_1^\mathsf{T} \eta_2^{-1} \eta_1}{d\eta_2} \\ &= \frac{1}{2} (-2\eta_2) \frac{1}{2} \eta_2^{-1} \eta_2^{-1} + \frac{1}{4} \eta_2^{-1} \eta_1 \eta_1^\mathsf{T} \eta_2^{-1} \\ &= \Sigma + \mu \mu^\mathsf{T} \end{split}$$

In computing derivatives, we used several matrix calculus facts:

$$\frac{d}{da}a^{\mathsf{T}}Ma = 2Ma$$

$$\frac{d}{dM}a^{\mathsf{T}}M^{-1}a = -M^{-\mathsf{T}}aa^{\mathsf{T}}M^{-\mathsf{T}}$$

$$\frac{d}{dM}\ln|M| = M^{-\mathsf{T}}$$

where $a \in \mathbb{R}^D$, $M \in \mathbb{R}^{D \times D}$. The Matrix Cookbook is recommended for looking up such matrix calculus facts.

3 Binomial

A binomial distribution is expressed as

$$x \sim \mathsf{Binom}(p)$$

$$P(x) = \binom{N}{x} p^x (1-p)^{(N-x)}$$

The probability function can be equivalently written as

$$P(x) = \binom{N}{x} p^x (1-p)^{(N-x)}$$

$$= \binom{N}{x} \exp\left[x \ln p + (N-x) \ln (1-p)\right]$$

$$= \binom{N}{x} \exp\left[x \ln \frac{p}{1-p} + N \ln (1-p)\right]$$

$$= \binom{N}{x} e^{N \ln (1-p)} \exp\left(x \ln \frac{p}{1-p}\right)$$

Hence, the base measure f, the normalizer g, the natural parameters ϕ , the sufficient statistic T are

$$f(x) = \binom{N}{x}$$
$$g(p) = e^{N \ln{(1-p)}}$$
$$\phi(p) = \ln{\frac{p}{1-p}}$$
$$\mathsf{T}(x) = x$$

The expectation of the sufficient statistics can be computed as

$$\begin{split} \langle x \rangle &= -\frac{d \ln g(p)}{dp} \frac{dp}{d\phi(p)} \\ &= -\frac{dN \ln (1-p)}{dp} \frac{dp}{d \ln \frac{p}{1-p}} \\ &= \frac{N}{1-p} \frac{1}{\frac{1}{p} + \frac{1}{1-p}} \\ &= Np \end{split}$$

4 Multinomial

A multinomial distribution is expressed as

$$\mathbf{x} \sim \mathsf{Multinom}(\mathbf{p})$$

$$P(\mathbf{x}) = \frac{N!}{x_1! x_2! \dots x_D!} \prod_{d=1}^D p_d^{x_d}$$

The probability function can be equivalently written as

$$P(\mathbf{x}) = \frac{N!}{x_1! x_2! \dots x_D!} \prod_{d=1}^{D} p_d^{x_d}$$
$$= \frac{N!}{x_1! x_2! \dots x_D!} \exp\left(\sum_{d=1}^{D} x_d \ln p_d\right)$$

Hence, the base measure f, the normalizer g, the natural parameters ϕ , the sufficient statistic T are

$$f(\mathbf{x}) = \frac{N!}{x_1! x_2! \dots x_D!}$$

$$g(\mathbf{p}) = 1$$

$$\phi(\mathbf{p}) = \begin{bmatrix} \ln p_1 \\ \ln p_2 \\ \vdots \\ \ln p_{D-1} \end{bmatrix}$$

$$\mathsf{T}(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{D-1} \end{bmatrix}$$

Note that the sufficient statistic is (D-1)-dimensional, not D-dimensional. This is because we have the constraint $\sum_{d=1}^D x_d = N$, and can always infer the D-th dimension if given (D-1) dimensions. The same argument applies to the natural parameters because there is also a constraint $\sum_{d=1}^D p_d = 1$.

The expectation of the sufficient statistics can be computed using the definition of expectation

$$\begin{split} \langle x_d \rangle &= \sum_{x_d=0}^N x_d P(\mathbf{x}) \\ &= \sum_{x_d=1}^N x_d \frac{N!}{x_1! x_2! \cdots x_D!} p_1^{x_1} p_2^{x_2} \cdots p_D^{x_D} \\ &= \sum_{x_d=1}^N x_d \frac{N}{x_d} p_d \cdot \frac{(N-1)!}{x_1! \cdots (x_d-1)! \cdots x_D!} p_1^{x_1} \cdots p_d^{x_d-1} \cdots p_D^{x_D} \\ &= N p_d \sum_{x_d=1}^N \frac{(N-1)!}{x_1! \cdots (x_d-1)! \cdots x_D!} p_1^{x_1} \cdots p_d^{x_d-1} \cdots p_D^{x_D} \\ &= N p_d \sum_{x_d=0}^{N-1} \frac{(N-1)!}{x_1! x_2! \cdots x_D!} p_1^{x_1} p_2^{x_2} \cdots p_D^{x_D} \\ &= N p_d \end{split}$$

where we used an equality from the multinomial expansion

$$1 = (p_1 + p_2 + \dots + p_D)^{N-1} = \sum_{x_d=0}^{N-1} \frac{(N-1)!}{x_1! x_2! \cdots x_D!} p_1^{x_1} p_2^{x_2} \cdots p_D^{x_D}$$

5 Poisson

A Poisson distribution is expressed as

$$x \sim \mathsf{Poisson}(\mu)$$

$$P(x) = \frac{\mu^x e^{-\mu}}{x!}$$

The probability function can be equivalently written as

$$P(x) = \frac{\mu^x e^{-\mu}}{x!}$$

$$= \frac{1}{x!} e^{-\mu} e^{\ln \mu^x}$$

$$= \frac{1}{x!} e^{-\mu} e^{x \ln \mu}$$

Hence, the base measure f, the normalizer g, the natural parameters ϕ , the sufficient statistic T are

$$f(x) = \frac{1}{x!}$$
$$g(\mu) = e^{-\mu}$$
$$\phi(\mu) = \ln \mu$$
$$T(x) = x$$

The expectation of the sufficient statistics can be computed as

$$\langle x \rangle = -\frac{d \ln g(\mu)}{d \mu} \frac{d \mu}{d \phi(\mu)} = -\frac{d \ln e^{-\mu}}{d \mu} \frac{d \mu}{d \ln \mu} = \mu$$

6 Beta

A Beta distribution is expressed as

$$x \sim \mathsf{Beta}(\alpha, \beta)$$

$$P(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

The probability function can be equivalently written as

$$P(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$= \frac{1}{B(\alpha, \beta)} e^{(\alpha - 1) \ln x} e^{(\beta - 1) \ln(1 - x)}$$

$$= \frac{1}{B(\alpha, \beta)} e^{(\alpha - 1) \ln x + (\beta - 1) \ln(1 - x)}$$

Hence, the base measure f, the normalizer g, the natural parameters ϕ , the sufficient statistic T are

$$f(x) = 1$$

$$g(\alpha, \beta) = \frac{1}{B(\alpha, \beta)}$$

$$\phi(\alpha, \beta) = \begin{bmatrix} \alpha - 1 \\ \beta - 1 \end{bmatrix}$$

$$T(x) = \begin{bmatrix} \ln x \\ \ln(1 - x) \end{bmatrix}$$

The expectation of the sufficient statistic is

$$\langle \mathsf{T}(x) \rangle = \begin{bmatrix} \langle \ln x \rangle \\ \langle \ln(1-x) \rangle \end{bmatrix} = -\frac{d \ln g(\alpha,\beta)}{d \phi(\alpha,\beta)} = \frac{d \ln B(\alpha,\beta)}{d \begin{bmatrix} \alpha-1 \\ \beta-1 \end{bmatrix}} = \begin{bmatrix} \frac{d \ln B(\alpha,\beta)}{d \alpha} \\ \frac{d \ln B(\alpha,\beta)}{d \beta} \end{bmatrix}$$

We can write the Beta function in terms of Gamma functions

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

The expectation can thus be computed as

$$\langle \ln x \rangle = \frac{d \ln \Gamma(\alpha)}{d \alpha} - \frac{d \ln \Gamma(\alpha + \beta)}{d \alpha} = \psi(\alpha) - \psi(\alpha + \beta)$$
$$\langle \ln(1 - x) \rangle = \frac{d \ln \Gamma(\beta)}{d \alpha} - \frac{d \ln \Gamma(\alpha + \beta)}{d \alpha} = \psi(\beta) - \psi(\alpha + \beta)$$

where the digamma function is defined as the logarithmic derivative of the gamma function $\psi(z) = \frac{d}{dz} \ln \Gamma(z)$.

7 Gamma

A Gamma distribution is expressed as

$$x \sim \mathsf{Gamma}(\alpha,\beta)$$

$$P(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{(\alpha-1)} e^{-\beta x}$$

The probability function can be equivalently written as

$$P(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{(\alpha-1)} e^{-\beta x}$$
$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{(\alpha-1)\ln x} e^{-\beta x}$$
$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{(\alpha-1)\ln x - \beta x}$$

Hence, the base measure f, the normalizer g, the natural parameters ϕ , the sufficient statistic T are

$$f(x) = 1$$

$$g(\alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}$$

$$\phi(\alpha, \beta) = \begin{bmatrix} \alpha - 1 \\ -\beta \end{bmatrix}$$

$$T(x) = \begin{bmatrix} \ln x \\ x \end{bmatrix}$$

The expectation of the sufficient statistics can be computed as

$$\langle \mathsf{T}(x) \rangle = \begin{bmatrix} \langle \ln x \rangle \\ \langle x \rangle \end{bmatrix} = -\frac{d \ln g(\alpha,\beta)}{d \phi(\alpha,\beta)} = \frac{d \left[-\alpha \ln \beta + \ln \Gamma(\alpha) \right]}{d \begin{bmatrix} \alpha - 1 \\ -\beta \end{bmatrix}} = \begin{bmatrix} -\ln \beta + \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} \\ \frac{\alpha}{\beta} \end{bmatrix} = \begin{bmatrix} -\ln \beta + \psi(\alpha) \\ \frac{\alpha}{\beta} \end{bmatrix}$$

8 Dirichlet

A Dirichlet distribution is expressed as

$$\begin{aligned} \mathbf{x} &\sim \mathsf{Dirichlet}(\pmb{\alpha}) \\ P(x) &= \frac{\Gamma\left(\sum_{d=1}^{D} \alpha_d\right)}{\prod_{d=1}^{D} \Gamma(\alpha_d)} \prod_{d=1}^{D} x_d^{\alpha_d - 1} \end{aligned}$$

The probability function can be equivalently written as

$$P(x) = \frac{\Gamma\left(\sum_{d=1}^{D} \alpha_d\right)}{\prod_{d=1}^{D} \Gamma(\alpha_d)} \prod_{d=1}^{D} x_d^{\alpha_d - 1}$$
$$= \frac{\Gamma\left(\sum_{d=1}^{D} \alpha_d\right)}{\prod_{d=1}^{D} \Gamma(\alpha_d)} \exp\left[\sum_{d=1}^{D} (\alpha_d - 1) \ln x_d\right]$$

Hence, the base measure f, the normalizer g, the natural parameters ϕ , the sufficient statistic T are

$$f(\mathbf{x}) = 1$$

$$g(\alpha) = \frac{\Gamma\left(\sum_{d=1}^{D} \alpha_d\right)}{\prod_{d=1}^{D} \Gamma(\alpha_d)}$$

$$\phi(\alpha) = \begin{bmatrix} \alpha_1 - 1\\ \alpha_2 - 1\\ \vdots\\ \alpha_D - 1 \end{bmatrix}$$

$$\mathsf{T}(\mathbf{x}) = \begin{bmatrix} \ln x_1\\ \ln x_2\\ \vdots\\ \ln x_D \end{bmatrix}$$

The expectation of the sufficient statistics can be computed as

$$\langle \mathsf{T}(x) \rangle = \begin{bmatrix} \langle \ln x_1 \rangle \\ \langle \ln x_2 \rangle \\ \vdots \\ \langle \ln x_D \rangle \end{bmatrix} = -\frac{d \ln g(\boldsymbol{\alpha})}{d\phi(\boldsymbol{\alpha})}$$

Equivalently,

$$\langle \ln x_d \rangle = -\frac{d \ln g(\alpha)}{d\alpha_d}$$

$$= \frac{d}{d\alpha_d} \left[-\ln \Gamma \left(\sum_{d=1}^D \alpha_d \right) + \sum_{d=1}^D \ln \Gamma(\alpha_d) \right]$$

$$= \frac{d}{d\alpha_d} \left[-\ln \Gamma \left(\sum_{d=1}^D \alpha_d \right) + \ln \Gamma(\alpha_d) \right]$$

$$= -\psi \left(\sum_{d=1}^D \alpha_d \right) + \psi(\alpha_d)$$